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ABSTRACT 
This research deals with the buckling analysis of nanocomposite polymeric tempera-
ture-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs). For 
the carbon-nanotube reinforced composite (CNTRC) plate, uniform distribution (UD) 
and three types of functionally graded (FG) distribution patterns of SWCNT rein-
forcements are assumed. The material properties of FG-CNTRC plate are graded in 
the thickness direction and estimated based on the rule of mixture. The CNTRC is 
located in a elastic medium which is simulated with temperature-dependent Pasternak 
medium. Based on orthotropic Mindlin plate theory, the governing equations are de-
rived using Hamilton’s principle and solved by Navier method. The influences of the 
volume fractions of carbon nanotubes, elastic medium, temperature and distribution 
type of CNTs are considered on the buckling of the plate. Results indicate that CNT 
distribution close to top and bottom are more efficient than those distributed nearby 
the mid-plane for increasing the stiffness of plates. 

Keywords: buckling; temperature-dependent mindling plates; temperature-dependent 
elastic medium; FG materials.

INTRODUCTION

Recently, due to the advantage mechanical, 
physical and electronic properties of CNTs [Sal-
vetat-Delmotte and Rubio, 2002], these advanced 
materials are considered to be excellent candi-
dates for the reinforcement of polymer compos-
ites [Esawi and Farag, 2007; Fiedler et al. 2006]. 
In actual structural applications, CNTRC, as a 
type of advanced material, have a wide variety of 
applications in microelectromechanical systems 
(MEMS) and nanoelectromechanical systems 
(NEMS). Hence, knowledge of the bending char-
acteristics of these structures is important. 

The problem of bending of thick plates has 
attracted considerable attention in recent years. 
The effect of transverse shear deformation on 
the bending of elastic plates was studied by 
Reissner [1945]. Zenkour [2003] proposed an 
exact mixed-classical solution for the bending 
analysis of shear deformable rectangular plates. 

Buczkowski and Torbacki [2001] used finite ele-
ment for modelling of thick plates on two-pa-
rameter elastic foundation. Based on the bound-
ary element method, the analysis of plates on 
two-parameter elastic foundations with nonlin-
ear boundary conditions was studied by Chuch-
eepsakul and Chinnaboon [2003]. Sladek et al. 
[2002] investigated meshless local boundary 
integral equation method for simply supported 
and clamped plates resting on elastic founda-
tion. Akhavan et al. [2009a, 2009b] introduced 
exact solutions for buckling analysis of rectan-
gular Mindlin plates subjected to uniformly and 
linearly distributed in-plane loading on two op-
posite edges, simply supported resting on elastic 
foundation. Postbuckling, nonlinear bending and 
nonlinear vibration analyses for SWCNTs rest-
ing on a two-parameter elastomeric foundation 
in thermal environments were presented by Shen 
and Zhang [2011]. Heydari et al. [2014] studied 
an analytical approach for transverse bending 
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analysis of an embedded symmetric laminated 
rectangular plate using Mindlin plate theory and 
the surrounding elastic medium simulated us-
ing Pasternak foundation. They indicated that 
the maximum deflection of the laminated plate 
decreases when considering an elastic medium.

None of the above researchers have con-
sidered nanocomposite structures. Reddy et al. 
[1984] studied the effect of transverse shear de-
formation on deflection and stresses of laminated 
composite plates subjected to uniformly distrib-
uted load using finite element analyses. The anal-
ysis of composite plates using higher-order shear 
deformation theory and a finite point formulation 
based on the multiquadric radial basis function 
method was presented by Ferreira et al. [2003]. 
Swaminathan and Ragounadin [2004] applied an 
analytical solution for static analyzing of antisym-
metric angle-ply composite and sandwich plates. 
An investigation on the nonlinear bending of sim-
ply supported, functionally graded nanocompos-
ite plates reinforced by SWCNTs subjected to a 
transverse uniform or sinusoidal load in thermal 
environments was investigated by Shen [2009]. 
Baltacıoğlu et al. [2011] presented the nonlinear 
static analysis of a rectangular, laminated com-
posite thick plate resting on nonlinear two-pa-
rameter elastic foundation with cubic nonlinear-
ity. They used the first-order shear deformation 
theory for plate formulation and investigated the 
effects of foundation and geometric parameters of 
plates on nonlinear deflections. Bending and free 
vibration analyses of thin-to-moderately thick 
composite plates reinforced by SWCNTs using 
the finite element method based on the first order 
shear deformation plate theory were presented by 
Zhu et al. [2011].

In the present study, the orthotropic Mind-
lin plate theory is used for buckling behavior 
of polymeric temperature-dependent plates re-
inforced by SWCNTs resting on temperature-
dependent elastic medium. For CNTRC plate, 
both cases of uniform and FG distribution pat-
terns of SWCNT reinforcements are considered. 
The rule of mixture is used in order to obtain the 
equivalent material properties of FG-CNTRC 
plate. The nonlinear governing equations are 
obtained based on Hamilton’s principal along 
with von Kármán geometric nonlinearity. Ex-
act solution is applied for buckling load of the 
FG-CNTRC polymeric plate. The effects of the 
volume fractions of carbon nanotubes, elastic 
medium, temperature, and distribution type of 

CNTs on the buckling load of the FG-CNTRC 
polymeric plate are disused in detail.

FORMULATION

As shown in Figure 1, a CNTRC plate with 
length L, width b and thickness h is considered. 
The CNTRC plate is surrounded by an orthotropic 
elastomeric temperature-dependent medium 
which is simulated by k, ξG  and ηG  correspond 
Winkler foundation parameter, shear foundation 
parameters in ξ and η directions, respectively. 
Four types of CNTRC plates namely as uniform 
distribution (UD) along with three types of FG 
distributions (FGA, FGO, FGX) of CNTs along 
the thickness direction of a CNTRC plate is con-
sidered. In order to obtain the equivalent material 
properties two-phase Nanocomposites (i.e. poly-
mer as matrix and CNT as reinforcer), the rule of 
mixture [Esawi and Farag, 2007] is applied. Ac-
cording to mixture rule, the effective Young and 
shear moduli of CNTRC plate can be written as:
 E11 ,)1(11111 mCNTrCNT EVEVE −+=η  (1)
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where 11rE , 22rE  and 11rG indicate the Young’s moduli and shear modulus of SWCNTs, 

respectively, and mE , mG  represent the corresponding properties of the isotropic matrix. The 

scale-dependent material properties, j  (j= 1, 2, 3), can be calculated by matching the 

effective properties of CNTRC obtained from the MD simulations with those from the rule of 

mixture. CNTV  and mV  are the volume fractions of the CNTs and matrix, respectively, which 

the sum of them equals to unity. The uniform and three types of FG distributions of the CNTs 

along the thickness direction of the CNTRC plates take the following forms: 
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The scale-dependent material properties, ηj  (j 
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where: wCTN, ρm  and ρCTN are the mass fraction of 
the CNT, the densities of the matrix and 
CNT, respectively. 

Similarly, the thermal expansion coefficients 
in the longitudinal and transverse directions re-
spectively (α11 and α22), Poisson’s ratio (v11) and 
the density (ρ) of the CNTRC plates can be de-
termined as:
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where ijC  denotes temperature-dependent elastic coefficients which can be expressed as 
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Noted that ijC  and 2211, may be obtained using rule of mixture (i.e. Eqs. (1-7)). 

4. Nonlinear Mindlin plate theory 

Based on Mindlin plate theory, the displacement field can be expressed as (Reddy, 1984) 

),,,(),,(),,,( tyxztyxutzyxu xx     

),,,(),,(),,,( tyxztyxvtzyxu yy   (15) 

),,,(),,,( tyxwtzyxuz    

where ( zxx uuu ,, ) denote the displacement components at an arbitrary point ( zyx ,, ) in the 
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0z ) of the plate along the x-, y-, and z-directions, respectively; ),( yxx and ),( yxy are 

the rotations of the normal to the mid-plane about x- and y- directions, respectively.  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 

(13)
where:  Cij denotes temperature-dependent elastic 

coefficients which can be expressed as:

Fig. 1. Configurations of the SWCNT distribution in a CNTRC plates: (a) UD CNTRC plate; 
(b) FG-A CNTRC plate; (c) FG-O CNTRC plate; (d) FG-X CNTRC plate

(8)



155

Advances in Science and Technology Research Journal  Vol. 10 (29), 2016

6 
 

The constitutive equation for stresses σ  and strains ε  matrix in thermal environment may be 

written as follows 

   
   

 
 

 

,

,0000
0,000
00,00
000,,
000,,

22

11

66

55

44

2221

1211




















































































xy

xz

yz

yy

xx

xy

zx

yz

yy

xx

T
T

TzC
TzC

TzC
TzCTzC
TzCTzC

















 

 

 

(13) 

 

where ijC  denotes temperature-dependent elastic coefficients which can be expressed as 

   ,1,  1 211212121221121111   ECEC    

 ,1 21122222  EC  (14) 

. ,   ,  126613552344 GCGCGC    

Noted that ijC  and 2211, may be obtained using rule of mixture (i.e. Eqs. (1-7)). 

4. Nonlinear Mindlin plate theory 

Based on Mindlin plate theory, the displacement field can be expressed as (Reddy, 1984) 

),,,(),,(),,,( tyxztyxutzyxu xx     

),,,(),,(),,,( tyxztyxvtzyxu yy   (15) 

),,,(),,,( tyxwtzyxuz    

where ( zxx uuu ,, ) denote the displacement components at an arbitrary point ( zyx ,, ) in the 

plate, and ( wvu ,, ) are the displacement of a material point at ( yx, ) on the mid-plane (i.e. 

0z ) of the plate along the x-, y-, and z-directions, respectively; ),( yxx and ),( yxy are 

the rotations of the normal to the mid-plane about x- and y- directions, respectively.  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 

 (14)

Noted that Cij and α11, α22 may be obtained us-
ing the rule of mixture (i.e. Eqs. (1–7)).

NONLINEAR MINDLIN PLATE THEORY

Based on Mindlin plate theory, the displace-
ment field can be expressed as (Reddy, 1984):

6 
 

The constitutive equation for stresses σ  and strains ε  matrix in thermal environment may be 

written as follows 

   
   

 
 

 

,

,0000
0,000
00,00
000,,
000,,

22

11

66

55

44

2221

1211




















































































xy

xz

yz

yy

xx

xy

zx

yz

yy

xx

T
T

TzC
TzC

TzC
TzCTzC
TzCTzC

















 

 

 

(13) 

 

where ijC  denotes temperature-dependent elastic coefficients which can be expressed as 

   ,1,  1 211212121221121111   ECEC    

 ,1 21122222  EC  (14) 

. ,   ,  126613552344 GCGCGC    

Noted that ijC  and 2211, may be obtained using rule of mixture (i.e. Eqs. (1-7)). 

4. Nonlinear Mindlin plate theory 

Based on Mindlin plate theory, the displacement field can be expressed as (Reddy, 1984) 

),,,(),,(),,,( tyxztyxutzyxu xx     

),,,(),,(),,,( tyxztyxvtzyxu yy   (15) 

),,,(),,,( tyxwtzyxuz    

where ( zxx uuu ,, ) denote the displacement components at an arbitrary point ( zyx ,, ) in the 

plate, and ( wvu ,, ) are the displacement of a material point at ( yx, ) on the mid-plane (i.e. 

0z ) of the plate along the x-, y-, and z-directions, respectively; ),( yxx and ),( yxy are 

the rotations of the normal to the mid-plane about x- and y- directions, respectively.  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 

(15)

where: (ux, uy, uz) denote the displacement com-
ponents at an arbitrary point (x, y, z) in the 
plate, and (u, v, w) are the displacement of 
a material point at (x, y) on the mid-plane 
(i.e. z = 0) of the plate along the x-, y-, and 
z-directions, respectively; 

 ),( yxxψ and ),( yxyψ are the rotations of 
the normal to the mid-plane about x- and 
y-directions, respectively. 

The von Kármán strains associated with the 
above displacement field can be expressed in the 
following form:

7 
 

x
z

x
w

x
u x

xx 




















2

2
1

 (16) 

y
z

y
w

y
v y

yy 






















2

2
1

 
(17) 

yyz y
w

 




 

(18) 

xxz x
w

 




 

(19) 

),(
xy

z
y
w

x
w

x
u

y
v yx

xy 


























 

(20) 

where ),( yyxx  are the normal strain components and ),,( xyxzyz  are the shear strain 

components. 

5. Energy method 

The total potential energy,V , of the CNTRC plate is the sum of strain energy, U  and the 
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where the stress resultant-displacement relations can be written as 
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where ),( yyxx  are the normal strain components and ),,( xyxzyz  are the shear strain 

components. 
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where: (εxx, εyy) are the normal strain components 
and (γyz, γxz, γxy) are the shear strain com-
ponents.

ENERGY METHOD

The total potential energy V of the CNTRC 
plate is the sum of strain energy U and the work 

done by the elastomeric medium W. The strain 
energy can be written as:

7 
 

x
z

x
w

x
u x

xx 




















2

2
1

 (16) 

y
z

y
w

y
v y

yy 






















2

2
1

 
(17) 

yyz y
w

 




 

(18) 

xxz x
w

 




 

(19) 

),(
xy

z
y
w

x
w

x
u

y
v yx

xy 


























 

(20) 

where ),( yyxx  are the normal strain components and ),,( xyxzyz  are the shear strain 

components. 

5. Energy method 

The total potential energy,V , of the CNTRC plate is the sum of strain energy, U  and the 

work done by the elasomeric medium, W . The strain energy can be written as 

   


0

2/

2/
 

2
1 h

h yzyzxzxzxyxyyyyyxxxx dVU  , (21) 

Combining of Eqs. (8)- (15) yields 

dxdy
xy

M
x

M
x

M
y
w

x
w

x
u

y
vN

x
wN

y
wN

y
w

y
vN

x
w

x
uNU

yx
xy

y
yy

x
xxxy

xxzyyzyyxx




























































 











































































 



 00
22

0 2
1

2
1

2
1

 
(22) 

where the stress resultant-displacement relations can be written as 
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where the stress resultant-displacement relations can be written as 
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In which K is shear correction coefficient. The external work due to orthotropic temperature-

dependent elastomeric medium and a uniform load on upper surface of the CNTRC plate can 

be written as 
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where q  is related to elastic medium. Elastic foundation force can be expressed as 

(Ghorbanpour Arani et al. 2011) 

,2WGKWP   (26) 

where K  and G  are spring and shear constants.  

6. Governing equations 

The governing equations can be derived by Hamilton's principal as follows 
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Substituting Eqs. (23) and (24) into Eq. (28), the stress resultant-displacement relations can 

be obtained as follow 
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Substituting Eqs. (23) and (24) into Eq. (28), 
the stress resultant-displacement relations can be 
obtained as follows:
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7. Exact solution 

Steady  state  solutions  to  the  governing  equations  of  the  plate  which  relate  to  the  

simply supported boundary conditions can be assumed as (Ghorbanpour Arani et al. 2012) 
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Solving the above equation, yields the buckling load of system. 

8. Numerical Results and discussion 

A computer program is prepared for the numerical solution of buckling of CNTRC plates 

resting on an elastic temperature-dependent foundation. Here, Poly methyl methacrylate 

(PMMA) is selected for the matrix which have constant Poisson’s ratios of 34.0m , 

temperature-dependent thermal coefficient of   KTm /100005.01 6 , and 

temperature-dependent Young moduli of  GPaTEm 0034.052.3   in which TTT  0  

and KT 3000   (room temperature). In addition, (10, 10) SWCNTs are selected as 

reinforcements with the material properties listed in Table 1. The elastomeric medium is 

made of Poly dimethylsiloxane (PDMS) which the temperature-dependent material properties 

of which are assumed to be 48.0s  and  GPaTEs 0034.022.3   in which TTT  0  

and KT 3000   (room temperature) (Shen, 2009).  

Depicted in Fig. 2 is the buckling load for the UD and three types of FG CNTRC plates 

versus thickness. It should be noted that the mass fraction ( CNTw ) of the UD and FG 

distribution of CNTs in polymer are considered equal for the purpose of comparisons. As can 

be seen, the buckling load of FGA- and FGO- CNTRC plates are lower than buckling load of 

UD-CNTRC plates while the FGX- CNTRC plate have higher buckling load with respect to 

three other cases. It is due to the fact that the stiffness of CNTRC plates changes with the 

form of CNT distribution in matrix. However, it can be concluded that CNT distribution close 

to top and bottom are more efficient than those distributed nearby the mid-plane for 
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Solving the above equation, yields the buck-
ling load of system.

NUMERICAL RESULTS AND DISCUSSION

A computer program is prepared for the numer-
ical solution of buckling of CNTRC plates resting 
on an elastic temperature-dependent foundation. 
Here, Poly methyl methacrylate (PMMA) is se-
lected for the matrixes which have constant Pois-
son’s ratios of vm = 0.34, temperature-dependent 
thermal coefficient of vm = (1 + 0.0005ΔT)×10-6/K, 
and temperature-dependent Young moduli of Em 
= (3.52–0.0034T) GPa in which T = T0+ΔT  and 
T0 = 300 K (room temperature). In addition, (10, 
10) SWCNTs are selected as reinforcements with 
material properties listed in Table 1. The elasto-
meric medium is made of Poly dimethylsiloxane 
(PDMS) whose temperature-dependent material 
properties of which are assumed to be vm = 0.48 
and Es = (3.22–0.0034T) GPa in which T = T0+ΔT 
and T0 = 300 K (room temperature) [Shen, 2009]. 

It should be noted that the mass fraction 
(wCNT) of the UD and FG distribution of CNTs in 
the polymer are considered equal for the purpose 
of comparisons. As can be seen, the buckling 
load of FGA- and FGO-CNTRC plates are lower 
than buckling load of UD-CNTRC plates while 
the FGX-CNTRC plate have higher buckling 
load with respect to three other cases. It is due 
to the fact that the stiffness of CNTRC plates 
changes with the form of CNT distribution in the 
matrix. However, it can be concluded that CNT 
distribution close to top and bottom are more 
efficient than those distributed nearby the mid-
plane for increasing the stiffness of plates. In 
addition, increasing the thickness can decrease 
the buckling load of the CNTRC plate. This is 
because with increasing the thickness, the stabil-
ity of plate decreases. 

The effect of the CNT volume fraction on the 
buckling load of the CNTRC plate with respect 
to thickness is shown in Figure 3. It can be found 
that thickener plate can decrease the buckling 
load of the CNTRC plate. It is also observed that 
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increasing the CNT volume fraction increases the 
buckling load of the CNTRC plate. This is due to 
the fact that the increase of CNT volume fraction 
leads to a harder structure. Meanwhile, the effect 
of CNT volume fraction becomes more consider-
able at lower thickness. 

The effect of the elastic temperature-depen-
dent medium on the buckling load of the CNTRC 
plate with respect to thickness is illustrated in 
Figure 4. In this figure three cases are considered 
which are without elastic medium, Winkler medi-
um and Pasternak medium. As can be seen, con-
sidering elastic medium increases buckling load 

of the CNTRC plate. It is due to the fact that con-
sidering elastic medium leads to stiffer structure. 
Furthermore, the effect of the Pasternak-type is 
higher than the Winkler-type on the buckling load 
of the CNTRC plate. It is perhaps due to the fact 
that the Winkler-type is capable to describe just 
normal load of the elastic medium while the Pas-
ternak-type describes both transverse shear and 
normal loads of the elastomeric medium. 

The effect of temperature on the buckling load 
of the CNTRC plate, with respect to the thick-
ness, is demonstrated in Figure 5. The same as 
other figures, increasing the thickness decreases 

Fig. 2. Effects of CNT distribution on the buckling 
behavior of CNTRC plates

Fig. 3. Effects of CNT volume fraction on 
the buckling behavior of CNTRC plates

Table 1. Temperature-dependent material properties of (10, 10) SWCNT (L= 9.26 nm, R= 0.68 nm, h= 0.067 nm,  
175.012 =CNTυ )

Temperature (K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

500 5.5308 6.9348 1.9643 4.5361 5.0189

700 5.4744 6.8641 1.9644 4.6677 4.8943

Fig. 4. Effects of elastic medium on the buckling 
behavior of CNTRC plates

Fig. 5. Effects of temperature on the buckling 
behavior of CNTRC plates

 

Temperature (K) )(11 TPaECNT  )(22 TPaECNT  )(12 TPaGCNT  )/10( 6
12 KCNT   )/10( 6

22 KCNT   

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
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the buckling load of the CNTRC plate. It can be 
also found that the buckling load of the CNTRC 
plate decreases with increasing temperature 
which is due to higher stiffness of CNTRC plate 
with lower temperature. 

CONCLUSIONS

Based on orthotropic temperature-dependent 
Mindlin polymeric plate theory, buckling analysis 
of an embedded CNTRC plate was studied in this 
paper. CNT distributions in polymer were con-
sidered as UD, FGA, FGX and FGO. The rule of 
mixture was used for obtaining the material prop-
erties of FG-CNTRC plate. The nanocomposite 
system was surrounded in a temperature-depen-
dent elastic medium. Using strain-displacement 
relation, energy method and Hamilton’s principle, 
the governing equations were derived. In order to 
obtain the buckling load of the FG-CNTRC plate, 
Navier method was performed. The effects of the 
volume fractions of carbon nanotubes, elastic 
medium, temperature, thickness and distribution 
type of CNTs were considered. The results indi-
cate that considering elastic medium increases, 
buckling load of the FG-CNTRC plate decreases 
with increasing temperature. It was also con-
cluded that buckling load gets larger as the CNT 
volume fraction increases. Furthermore, the low-
est and highest buckling load were respectively 
obtained for FGO- and FGX-CNTRC plates.
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